OPTIMALITY CONDITIONS AND DUALITY IN FRACTIONAL ROBUST OPTIMIZATION PROBLEMS
نویسندگان
چکیده
منابع مشابه
Optimization problems in statistical learning: Duality and optimality conditions
Regularization methods are techniques for learning functions from given data. We consider regularization problems the objective function of which consisting of a cost function and a regularization term with the aim of selecting a prediction function f with a finite representation f(·) = ∑n i=1 cik(·, Xi) which minimizes the error of prediction. Here the role of the regularizer is to avoid overf...
متن کاملPareto Optimality Conditions and Duality for Vector Quadratic Fractional Optimization Problems
One of the most important optimality conditions to aid in solving a vector optimization problem is the first-order necessary optimality condition that generalizes the Karush-Kuhn-Tucker condition. However, to obtain the sufficient optimality conditions, it is necessary to impose additional assumptions on the objective functions and on the constraint set.The present work is concerned with the co...
متن کاملDuality and Optimality Conditions for Infinite Dimensional Optimization Problems
Using a nonsymmetric duality for abstract continuous convex control problems opti-mality conditions are derived for calculating the primal and dual solutions in the case of linear on state depending dual operators. Functional and pointwise conditions are considered. Subject: 49K22, 49K27, 49N15, 90C42. Keywords: abstract optimal control , nonsymmetric duality, suucient conditions of optimality,...
متن کاملOptimality Conditions and Duality in Minmax Fractional Programming, Part I: Necessary and Sufficient Optimality Conditions
The purpose of this paper is to develop a fairly large number of sets of global parametric sufficient optimality conditions under various generalized (F, b, φ, ρ, θ)univexity assumptions for a continuous minmax fractional programming problem involving arbitrary norms.
متن کاملDuality and optimality conditions in stochastic optimization and mathematical finance
This article studies convex duality in stochastic optimization over finite discrete-time. The first part of the paper gives general conditions that yield explicit expressions for the dual objective in many applications in operations research and mathematical finance. The second part derives optimality conditions by combining general saddle-point conditions from convex duality with the dual repr...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
ژورنال
عنوان ژورنال: East Asian mathematical journal
سال: 2015
ISSN: 1226-6973
DOI: 10.7858/eamj.2015.025